A non-invasive head-holding device for chronic neural recordings in awake behaving monkeys.
نویسندگان
چکیده
BACKGROUND We have developed a novel head-holding device for behaving non-human primates that affords stability suitable for reliable chronic electrophysiological recording experiments. The device is completely non-invasive, and thus avoids the risk of infection and other complications that can occur with the use of conventional, surgically implanted head-fixation devices. NEW METHOD The device consists of a novel non-invasive head mold and bar clamp holder, and is customized to the shape of each monkey's head. The head-holding device that we introduce, combined with our recording system and reflection-based eye-tracking system, allows for chronic behavioral experiments and single-electrode or multi-electrode recording, as well as manipulation of brain activity. RESULTS AND COMPARISON WITH EXISTING METHODS With electrodes implanted chronically in multiple brain regions, we could record neural activity from cortical and subcortical structures with stability equal to that recorded with conventional head-post fixation. Consistent with the non-invasive nature of the device, we could record neural signals for more than two years with a single implant. Importantly, the monkeys were able to hold stable eye fixation positions while held by this device, demonstrating the possibility of analyzing eye movement data with only the gentle restraint imposed by the non-invasive head-holding device. CONCLUSIONS We show that the head-holding device introduced here can be extended to the head holding of smaller animals, and note that it could readily be adapted for magnetic resonance brain imaging over extended periods of time.
منابع مشابه
Visual response characteristics of neuronal clusters in the caudate nucleus of behaving cats
Background: Anesthetized, paralyzed domestic cats are often used as model organisms in visual neu-rophysiology. However, in the last few decades, behaving animal models have gathered ground inneurophysiology, due to their advantages over anesthetized, paralyzed models.New Method: In the present study a new, behaving, awake feline model is described, which is suitable forchronic ...
متن کاملContrast gain control and horizontal interactions in V1: A DCM study
Using high-density electrocorticographic recordings - from awake-behaving monkeys - and dynamic causal modelling, we characterised contrast dependent gain control in visual cortex, in terms of synaptic rate constants and intrinsic connectivity. Specifically, we used neural field models to quantify the balance of excitatory and inhibitory influences; both in terms of the strength and spatial dis...
متن کاملA procedure for implanting organized arrays of microwires for single-unit recordings in awake, behaving animals.
In vivo electrophysiological recordings in the awake, behaving animal provide a powerful method for understanding neural signaling at the single-cell level. The technique allows experimenters to examine temporally and regionally specific firing patterns in order to correlate recorded action potentials with ongoing behavior. Moreover, single-unit recordings can be combined with a plethora of oth...
متن کاملChronic, multisite, multielectrode recordings in macaque monkeys.
A paradigm is described for recording the activity of single cortical neurons from awake, behaving macaque monkeys. Its unique features include high-density microwire arrays and multichannel instrumentation. Three adult rhesus monkeys received microwire array implants, totaling 96-704 microwires per subject, in up to five cortical areas, sometimes bilaterally. Recordings 3-4 weeks after implant...
متن کاملA Chronically Implantable Bidirectional Neural Interface for Non-human Primates
Optogenetics has potential applications in the study of epilepsy and neuroprostheses, and for studies on neural circuit dynamics. However, to achieve translation to clinical usage, optogenetic interfaces that are capable of chronic stimulation and monitoring with minimal brain trauma are required. We aimed to develop a chronically implantable device for photostimulation of the brain of non-huma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neuroscience methods
دوره 240 شماره
صفحات -
تاریخ انتشار 2015